Anti-Compton High Purity Germanium Gamma Spectrometer

Model: TK-102

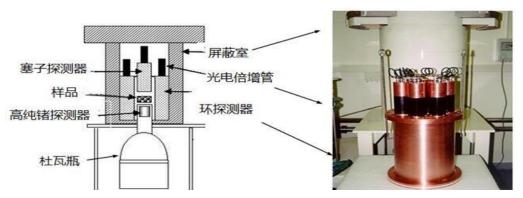


Fig. 1 TK-102 type anti-Compton high purity germanium γ system

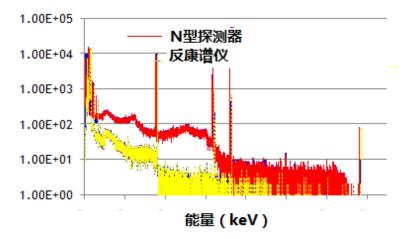


Fig. 2 Diagram of comparison of energy spectrum before and after anti-Compton for TK-102

I. Product Introduction

When measuring radioactivity using a gamma-ray spectrometer, the useful information is the allenergy peak of the characteristic gamma ray; for the gamma ray emitted from the source, if a part of energy is deposited in the detector after Compton scattering, this signal can not enter the full-energy peak; this signal is the background for the radioactivity measurement, and its existence will raise the detection limit of the measurement, not conducive to the measurement of low-level gamma radioactivity. The use of anti-coincidence technology can effectively reduce the impact of Compton scattering, and is conducive to reducing the detection limit and to the measurement of low-level radioactivity. TK-102-type anti-Compton high-purity germanium gamma spectrometer uses a highpurity germanium detector as the main detector, and uses a NaI ring detector as the anti-coincidence detector; when the particles produce signals in the ring detector and the main detector simultaneously, it means that the main detector records gamma particles without full energy deposited, thus the signal is rejected using the anti-coincidence technique in order to achieve suppression of the Compton scattering and to reduce the detectable limit. The TK-102 consists of N-type (or P-type wide energy) high purity germanium detector, sodium iodide ring detector, sodium iodide plug detector, anticoincidence electronic modules, multi-channel analyzer, lead chamber and sourceless efficiency calibration software, spectrum analysis software and other components. With the joint use of common multi-channel analyzer and anti-multi-channel analyzer, TK-102 can obtain the anti-Compton and non-anti-Compton energy spectrums simultaneously, allowing that the system has advantages of both ordinary laboratory high-purity germanium spectrometer and anti-Compton high-purity germanium spectrometer.

II. Main Features

• Combination of Common multi-channel analyzer and anti-Compton multi-channel analyzer enables to obtain the anti-Compton and non-anti-Compton energy spectrums simultaneously.

• With optimized design and low background materials, the system integration background is less than 0.6cps, and the system peak-to-Compton ratio is better than 1000: 1.

• The multi-channel, high-voltage module and other electronic systems use military-grade devices, with a special temperature stabilization design used, so the system has excellent long-term stability; the energy resolution at 1460.8KVV can be maintained less than 1.9KeV during the one-month continuous measurements.

• Energy spectrum analysis is mainly automatic, with auxiliary interactive analysis; the software has a powerful multiplet analysis ability.

• The radial information is provided for more than 3000 kinds of isotopes, with the nuclide library tightly combined with energy spectrum analysis software, for easy operation by user.

• Peak fitting results can be seen by users; users can understand the effect of energy spectrum analysis. Which is not be available by other commercial software.

III. Technical Specifications

1. Overall technical indicators

- System peak-to-Compton ratio: ≥ 1000 : 1;
- Simultaneous obtain and display the spectrograms before and after anti-Compton;
- Integral background: ≤ 0.6 cps (can be lower with customized low-background lead).

2. High purity germanium detector

The N type or P type wide-energy detectors with various types and efficiencies can be optional, with the typical indicators as follows:

- Energy range: 3keV ~ 10MeV;
- Relative efficiency: $\geq 60\%$;

- Resolution: $\leq 1.1 \text{keV}@122 \text{keV}; \leq 2.2 \text{keV}@1332 \text{keV};$
- Peak shape parameters: FW0.1M / FWHM \leq 2.0, FW0.2M / FWHM \leq 3.0;
- Liquid nitrogen refrigeration or liquid nitrogen condensation-return refrigeration is used.

3. Ring detector

- 9 "x 9" NaI (Tl) shield ring with a resolution of 9.5% @ 662 keV;
- Six PMT with 2" diameter.

4. Plug detector:

- 3 "x 3" NaI (Tl) crystal, with resolution of 7.5% @ 662 keV;
- One PMT with 3" diameter

5. Digital multi-channel

Special multi-channel for high-purity germanium spectrometer is used, with the main performance characteristics as follows.

- Maximum data throughput: greater than 100kcps;
- Coarse adjustment gain: 1, 2, 4, 8, 16 or 32 optional;
- Fine adjustment gain: 0.45 ~ 1 adjustable;
- Maximum address: 16384;
- Shaping time constant: rise time from 0.8µs to 23µs adjustable, with 0.2µs per step;

flat-top time from 0.3 to 2.4µs, with 0.1µs per step, selected by the computer (automatically adjusted under automatic optimization);

- Linearity: integral nonlinearity $\leq \pm 0.025\%$; differential nonlinearity $\leq \pm 1\%$;
- Temperature coefficient: gain <35ppm / ° C; zero point <3ppm / ° C;

• Overload recovery: at maximum gain, 1000 times overload recovers to within 2% of rated output at 2.5 times non-overload pulse width;

• Pulse anti-accumulation: automatically set the field value, the pulse pair resolution:

500ns;

• Signal processing: with digital spectrum stabilization, automatic pole-zero adjustment, digital gated baseline recovery and other functions;

- Data memory: 16384-channel non-volatile memory, with each capacity of 2³¹-1 counts;
- Memory segmentation (system conversion gain): 16384, 8192, 4096, 2048, 1024 or

512 channels selected by the computer;

- Digital spectrum stabilization: controlled by the computer; to stabilize the gain and zero;
- Automatic digital pole-zero adjustment: controlled by the computer, with manual or

automatic setting;

- Count rate display: real-time display on the computer screen;
- Dead time correction: accuracy (changes with peak area) <3% (0 ~ 50000cps);
- Communication interface: USB2.0;
- Single-channel or twin-channel: a single-channel MCA and twin-channel MCA optional;
 - Dimensions: 252mm × 150mm × 50mm;
 - Weight: 1kg;
 - Operating temperature: $-10 \sim 50$ °C;

6. Anti-compliance electronic module

TK-102-A anti-Compton electronic module produced by Beijing Tai Kun Industrial Equipment Co.,Ltd. is used, including seven-circuit fast amplifiers, frontier discrimination tripper, delayer and stretcher, as shown in Fig. 3, with specific indicators as follows:

1) Fast amplifier

- Rise time is less than 8 nanoseconds;
- With gated baseline recovery;
- With pole zero phase cancellation;
- 50- Ω delay line;
- Voltage gain adjustment factor: 0.9 ~ 500;
- Output drive voltage \pm 5V (with 50 Ω load);
- 2) Frontier discrimination trigger
 - Constant-ratio timing discrimination;
 - Excellent time resolution;
 - Rejection patterns with differential, integral, constant ratio and slow rise time;
 - Upper and lower threshold adjustable, with adjustment range of 30mV ~ 5V;
 - Time travel \leq 75ps (dynamic range: 100: 1);
 - Adjustable output pulse width;

3) Delayer

- Four independent input parts;
- 50- Ω calibration delay line for linear or logic signals;
- $0 \sim 63.5$ ns delay, 0.5ns step;
- Delay accuracy: <+ 0.1ns or + -1.0% (for each switch);

4) Stretcher

- Delay time: $0.5 \sim 5$ us adjustable;
- Broadening: $0.5 \sim 5$ us adjustable.

Fig. 3 Anti-Compton Electronics

7. Lead chamber

- Integral casted, press-type open door design with top translation ;
- Outer layer material: 1cm low-carbon steel;
- Middle layer material: 10cm low background radiation lead 4π direction shield;
- Inner layer material: 1mm thick tin and 3 mm oxygen-free copper, absorb X-ray;
- Area: 65cm x 65cm;
- Cavity size: Φ307mm x 604mm.

8. Energy spectrum analysis software

TK-102 is configured with a gamma-ray energy spectrum analysis software Gamma-4 that has developed its own distinctive features as well as integrating the advantages of main energy spectrum analysis software products internationally; that is, based on the automatic analysis as navigation, analysis results are exported through the selective precise interactive analysis. Gamma-4 is the only commercial energy spectrum analysis software that is capable of accurate analysis of multiplet. Gamma-4 integrates hardware control, energy spectrum acquisition, data analysis, report generation

and quality control in one, able to obtain 10 energy spectrum data simultaneously, having good compatibility with Windows7, Windows8 and Windows XP, with the following main functions:

• Spectrometer control: achievable parameter settings include: gain fine adjustment, start digital spectrum stabilization, adjusting high voltage, real time / live time display, setting the upper and lower discrimination threshold;

• Energy calibration: precise positioning of the peak position by unimodal fitting; the user determines the energy corresponding to the peak position according to the knowledge; the software provides nuclide peak information real-time query function;

• Peak searching: The first-order derivative and the second-order derivative method are used to search the isolated peak. On the basis of the fitting of the peak shape, the Mariscotti method is used to search the peak for the secondary peak searching, to determine the position of multiplet;

• Efficiency calibration: the software provides two functions, with one to call the efficiency calibration curve obtained by the experimental measurement and with the other to use calculation results got through the Gamma-4 sourceless efficiency calibration software seamless connecting wit this software; as the sourceless efficiency calibration is used, a variety of complex correction functions are no longer required in the spectral analysis, such as solid angle correction and attenuation correction;

• Peak fitting: through background deduction by the peak fitting to distinguish multiplet, the net counting rate is obtained. Gamma-4 provides excellent multiplet analysis function, using quasi-Newton method and Monte Carlo method and other numerical methods, to accurately analyze 20 multiplet. The non-linear background deduction is used to automatically adapt to the trend of changes in energy spectrum. The peak shape is fitted with a Gaussian function or a Gaussian function plus an front-to-rear exponential function trailing, having excellent fitting ability for distorted peak shape;

• Radioactivity calculation: For the different γ peak of the same nuclide, the radioactivity is calculated through the weighted average taking the branching ratio, and efficiency calibration factor into account. The nuclide attenuation and dead time correction during the measurement are also taken into account in the calculation of the radioactivity;

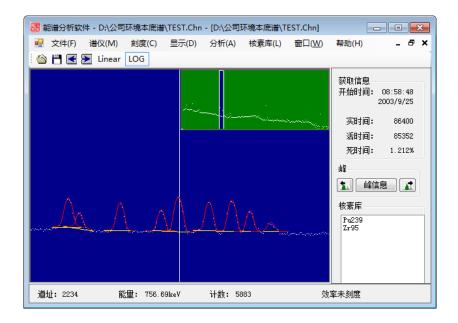


Fig. 4 Gamma-4 energy spectrum analysis software typical interface



Fig. 5 Gamma-4 energy spectrum analysis software interactive analysis interface

• Minimum detectable limit calculation: built-in Currie MDA, KTA MDA, PISO MDA, Critical level and other analytical methods for selection;

• Uncertainty analysis: the comprehensive calculation of the uncertainty of the detection efficiency and the uncertainty of the counting rate is used to get the uncertainty of energy spectrum measurement results;

• Nuclide library for analysis: from ENSF (Evaluated nuclear structure data file), there are spectral line systems of more than 3000 kinds of radioisotopes; user can query line information in real time in the use process.

• Software assessment: 100 energy spectrums from 16 international laboratories are compared for software assessment, with the analysis results accuracy meeting the following requirements:

• User interface: complete Chinese interface or complete English interface;

• Analysis process: first full automatic analysis is made; the user selects concerned nuclide and energy peak based on the results of automatic analysis, and then does high-precision interactive analysis, and then outputs the report. In general, fully automated analysis function is able to meet users' needs. With the interactive analysis function, users are allowed to add comments to the sample, to delete false peak in the spectrum, and to add peak that is not detected in the automatic processing, and to change the shape of fitting peaks;

• Report output: Output reports in TXT, PDF, HTML and XML formats.

9. Sourceless efficiency calibration software

TK-102 is equipped with a Sourceless Efficiency Calibration Software Gamma-4, which is a patented product used for sourceless efficiency calibration of semiconductor gamma-ray detector. The software features with powerful geometry and material modeling ability, high calculation precision, fast speed, simple interface, easy operation. The correctness of the core algorithm is verified by experimental measurement results of more than 200 pieces of sources of different shape and energy. The main functions are as follows:

• The use of powerful CAD software modeling is to achieve three-dimensional rapid visual modeling for source of an arbitrary shape;

- The distance from the radioactive source to the detector can be 0 to infinity;
- Calibration energy range: from 45keV to 7MeV;
- Integral control accuracy can be adjusted artificially, with the software default value of 3%.

The relative error of the test results of 200 body sources is generally not more than 10% from 45keV to 80 keV, and is not more than 5% from 80keV to 7MeV;

• Efficiency calibration curve calculation time: for symmetrical body source (such as environmental sample source), the calculation time is less than 20 seconds. For the shape of the asymmetric body source, the calculation time is generally less than 10 minutes;

• Chinese and English interfaces.

环境建模;		1000 1						- 10	10000						
ariz	打开	CO IRO	NUS(P) (UR C) 分析(1) 研究量(1)	0 68	100 1	81 (I)	Will (
(47)	9.0	MA.	1111	1+00											
1.又求胜氟和何															
23 8	NI HER	0 41			2		4	1.	-						
R.Missail	设力焊着的				_	_	_	- N	3						
0.7084	6.为丰山遗传]		-												
12.71 KMP 7178	说力探电对称			A PARA											
设力在右对称	设大电对称		-	保護效率											
CTLDOIA() HOTE	988. B128.			4.07e-002	-										
CILLERIC (II) SHOWING	t they many			3.12e-002	-	-	6	1	-	-	-	-	-		H
		1		2.39e-002	-	-	(1	-	-	-	-	-	-
) 1.84e-002	_	1		_			_	-	-	-	-
4 4945年11世紀主席	3			1.41e-002	-	1		_		1			1.5		
AURICEN THELM	18			1.08e-002		t			11.1	1.1	1		1.1		
0.5	17.2			8.30e-003		1	-		1.1.1		100		1	-	Г
itHR	any					4									
設立効率				6.37e-003											F
	-sx art		/	4.89e-003			-		-		-	-			H
FRM#	0.0000			3.75e-003	-	-	_	_		-	-	-	-	~	-
22* 7	0.0000			2,88e-003	_	_			_	-	-	-	-		-
2.8-	演事			2.21e-003											
100	HR .			31	50	81	13	2 21	5 35	1 5	10 50	10 11	511 24	450 40	100
62	22			服合会	e la	mer F	86056	C=+00/	245.26	1027.	+0028	est 1 0	471 08.	+0924	head
	h			요송순.	A:	ny	91960	PE - 09.	C+0.00	12676	- and ch	nid.173	ALC: 1 340	tenech	
		1							1- 1	OK.	1				

Fig. 6 Sourceless efficiency calibration software Gamma-4 typical interface

	Chib VI.0 様: 様: 様: 様: 様: (保存) (保存) (現存) (現市) <th>打开</th> <th></th> <th>● 100 1200 179 3750 76 5000 68 5000 182 9600 末 ▼ 5 5 5</th>	打开		● 100 1200 179 3750 76 5000 68 5000 182 9600 末 ▼ 5 5 5
	概述 打 概述 打 保存 男 性喧災: 次のws.4個 役方川 力/力凸面体 役方津 内回時対称 役方川 方左右対称 役方川		「保護書名 6: 「保護書意! 「保護書意! 「保護書意! 電量的意意(m): 電量的意意(m): 電量的意意(m): 電量的意意(m): 電量的意意(m): 電量的意意(m): 物和認知(基礎): 「Gualling(基礎)和的就分列指象: Gualling(基礎)和的就分列指象:	BH1:50 ∨ 00 7200 76.5000 68.5000 182.9500 182.9500 5 5 5
	新速 打 保存 男 建筑文: 法 新加 力/waw arg 设力目 沙口面体 设力率 力回動対称 设力率 大方公式時 役力		守夜善売型 (四番石(G)(四)) (四番石(G)(四)) (四番布高高(G)(四)) (四都南高高(G)(四)) (電画書高度(Gn)): 電画書高度(Gn): 電画書高度(Gn): 電画書高度(Gn): 電画書高度(Gn): 電画書高度(Gn): 電面電源(可能的社会)可格面): Guana通序(哲物社会)可格面):	80. 1200 19. 3750 16. 5000 68. 5000 182. 9600 182. 9600 5 5 5
	保存 男 健定又: 法 新加 少のmask 必力1 沙口面体 设力2 次回時対称 设力四 力左右対称 设力1			80. 1200 19. 3750 16. 5000 68. 5000 182. 9600 182. 9600 5 5 5
	生産文: 法 新加 の の が の の の の の の の の の の の の の の の の	 ●除 ● ● ● ● ● ●		79.3750 76.5000 68.5000 182.9600 水 ♥ 5 5 5
	減加 新加 力Game 品提 设力財 设力財 (均力面体 设力率 (均力面体 设力率 均面時対称 设力回時対称 均左右対称	#屏蔽物 #凸面体 四角対称 #車対称	(使用检查器) (推直器分重径(ma): (推直器分重径(ma): (推直器合度(ma): (推直器合度(ma): (加加): (ma): (m	76.5000 68.5000 182.9600 ★ ♥ 5 5
	力Gamma 品優 设力却 (均力面体) 设力率 (均力面体) 设力率 均面除対称 设力回 均左右対称 设力率	#屏蔽物 #凸面体 四角対称 #車対称	 准直器外重径(m): 准直器内直径(m): 准直器成度(m): 物体的飲込材料: 畜影参数: Generallypi时的抗分阿格数: Generallypi时的抗分阿格数: 	68.5000 182.9600 水 ¥ 5 5
	(为凸面体 设为非 功回時対称 设为四 功左右対称 设为四	非凸面体 四角对称 3年对称	推直器的直径 (wa): 推直器高度 (wa): 物体的数以材料: 實驗参数: Gama 建X两初始处的网络数: Gama 建X两初始处的网络数:	68.5000 182.9600 水 ¥ 5 5
	为国時对称 说为四 为左右对称 说为	四角对称	 ・ 推直要素度(sn): 特容的飲込材料: 変動参数: Gamea提X时初始处分符格数: Gamea提X时初始处分符格数: 	× ×
	为国時对称 说为四 为左右对称 说为	四角对称	富数参数: Gaana通X内初始均分网格数: Gaana通X内初始均分网格数:	5
	为左右对称 说为1	專利称	Gama還X肉初始划分网格数: Gama還Y肉初始划分网格数:	5
			Gama還X肉初始划分网格数: Gama還Y肉初始划分网格数:	5
	1) 新設行 凸面容 10 2) Ganal 凸面体 非	11时称		5
			Gamma還2向初始划分网格数:	5
			Game:週网稿细分比率:	2.0000
			Gamma遵XY向单独细分次数:	1
· 材料2		>	Gama遵Z向非均匀划分初始常	数: 0.8500
	你:铁		Gamma避Z向非均匀划分细分比	滓: 0.5000
	材料设置…		Gamma遵细分极限比:	0.0050
	计算能量效率		(网格遗长/物体中心与原点翼	
	拟合效率刻度曲线		Theta角初始划分网格数:	12
1	剧效率或能量:		Phi角初始划分网格数:	24
日本の		0.0000	屏蔽物高散参数(mm);	3.0000
部屋が		0.0000	总体进代相对误差:	0.0300
	能量=>效率		总体进代次数:	3
			单点进代相对误差:	0.0300
	批计算		单点进代次数:	3
	参数设置		多项式拟合阶次:	7
	帮助		存为默认值 f	友复默认值

Fig. 7 Sourceless efficiency calibration software Gamma-4 typical parameter interface

IV. Applications

• Applicable for professional laboratories for measurement of soil radioactivity, food radioactivity, water radioactivity, metal radioactivity, building materials radioactivity, and biological samples radioactivity, with a particular advantage for measurement of sample containing trace radioactive nuclei.

Beijing TaiKun Industrial Equipment Co.,Ltd.

Address: Room 2028, JinYanlong building Huilongguan, Changping District,

Beijing 100096 P.R.C.

Tel: 0086-010-56273432

Fax: 0086-010-62712978

E-mail: beijingtaikun@163.com, 13691111138@163.com

http: www.taikunchina.com